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1   |   INTRODUCTION

Moving about in the world during daily life requires ex-
ecuting and successfully shifting between a variety of 
functional tasks, such as rising from a chair or bed, walk-
ing, turning, and navigating stairs. This multi-task nature 
of daily life is recognized clinically, with many clini-
cal tests of mobility assessing multiple functional tasks 

(e.g., Timed-Up-and-Go test [Podsiadlo & Richardson, 
1991], Berg Balance test [Berg et al., 1995], Mini BESTest 
[Franchignoni et al., 2010]). In contrast, the neuromus-
cular control underlying the execution of and coordina-
tion between different functional tasks is less understood. 
Although the neuromuscular control of different func-
tional tasks have been studied in isolation (e.g., loco-
motion [Cappellini et al., 2006], standing [Maurer et al., 
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Abstract
Moving about in the world during daily life requires executing and successfully 
shifting between a variety of functional tasks, such as rising from a chair or bed, 
walking, turning, and navigating stairs. Moreover, moving about during daily life 
requires not only navigating between different functional tasks, but also perform-
ing these tasks in the presence of mental distractions. However, little is known 
about underlying neuromuscular control for executing and shifting between 
these different tasks. In this study, we investigated muscle coordination across 
walking, turning, and chair transfers by applying motor module (a.k.a. muscle 
synergy) analysis to the Timed-Up-and-Go (TUG) test with and without a sec-
ondary cognitive dual task. We found that healthy young adults recruit a small 
set of common motor modules across the subtasks of the TUG test and that their 
composition is robust to cognitive distraction. Instead, cognitive distraction im-
pacted motor module activation timings such that they became more consistent. 
This work is the first to demonstrate motor module generalization across mul-
tiple tasks that are both functionally different and crucial for healthy mobility. 
Overall, our results suggest that the central nervous system may draw from a 
“library” of modular control strategies to navigate the variety of movements and 
cognitive demands required of daily life.
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2006]), little is known about how neuromuscular control 
compares across different functional tasks. A better un-
derstanding of neuromuscular control across different 
functional tasks will provide valuable insight into the 
strategies that enable us to successfully navigate the many 
tasks required for daily life.

Motor module analysis is commonly used to investi-
gate neuromuscular control strategies during movement 
(e.g., Barroso et al., 2016; Cheung et al., 2005; Cheung, 
Piron, et al., 2009; D’Avella & Bizzi, 2005; Dominici et al., 
2011; Ivanenko et al., 2004; Santuz et al., 2020; Steele 
et al., 2015; Torres-Oviedo & Ting, 2007). Motor modules 
or muscle synergies, are groups of coactive muscles flex-
ibly recruited over time to meet the biomechanical de-
mands required of a functional task (Ting et al., 2015). To 
date, motor module analysis has primarily been used to 
investigate neuromuscular control within a single func-
tional task. Such studies provide evidence that similar 
motor modules are recruited within the same functional 
task under different task demands, such as level ver-
sus inclined running (Saito et al., 2018), varied pedaling 
speeds (Hug et al., 2011), straight versus curved walking 
(Chia Bejarano et al., 2017), and reactive balance with 
different stance positions (Torres-Oviedo & Ting, 2010). 
In each case, changing musculoskeletal configurations 
or mechanical demands were addressed with changes in 
temporal activation and/or incorporation of task-specific 
motor modules rather than a new set of modules for each 
condition. While this implies that the nervous system may 
rely on a common set of motor modules to accomplish a 
variety of conditions for a particular task, we do not know 
whether this motor module generalizability extends to a 
broader range of functionally different tasks.

Motor module generalization, or recruiting common 
motor modules across functionally different tasks, may 
enable the successful execution and switching between 
tasks. Initial evidence for motor module generalization 
comes from animal studies, where, for example, frogs 
were found to recruit common motor modules across 
walking, swimming, and jumping tasks (D’Avella et al., 
2003). Although seemingly all locomotive tasks, the joint 
mechanics required to produce them are different in each 
task. More recently, evidence that such motor module 
generalization also occurs in humans has emerged. In 
particular, we recently found that young adults recruit 
common motor modules across standing reactive balance 
and unperturbed walking (Allen et al., 2020) and that re-
duced generalization across these two functionally differ-
ent tasks was associated with impaired gait, balance, and 
mobility performance in both neurotypical and neurologi-
cally impaired populations (e.g., young adults [Allen et al., 
2020], stroke [Allen et al., 2019], PD [Allen et al., 2017]). 
Such a relationship provides support for motor module 

generalization as a neuromuscular control strategy for 
successful mobility during daily life. However, the extent 
to which motor modules are generalized across the wider 
range of functional tasks encountered during daily life 
(e.g., walking, turning, chair transfers) remains unclear.

Moving about during daily life requires not only nav-
igating between different functional tasks, but also per-
forming these tasks in the presence of mental distractions 
(i.e., cognitive-motor dual tasking). Putting on a jacket 
while carrying on a conversation or walking through store 
aisles while trying to remember the items on a grocery list 
are common examples of cognitive-motor dual tasking in 
everyday life. Because the biomechanical requirements of 
any functional task are the same with or without cognitive 
distraction, it is likely that the same motor modules are re-
cruited in both scenarios. Instead, the mental distraction 
may pull away some of the cognitive resources normally 
used to plan and generate movement, muddying the typi-
cal command signals and leading to changes in temporal 
motor module activation. It is known that dual-task con-
ditions result in increased variability in gait parameters 
(e.g., stride time [Montero-Odasso et al., 2012], or swing 
time [Hausdorff et al., 2008] in older adults) but the im-
pacts on muscle activation or motor module recruitment 
are not well characterized. However, increased gait vari-
ability suggests that the motor module activations produc-
ing gait may also become more variable (e.g., from step to 
step during walking). Identifying the differences in motor 
module recruitment between distracted and undistracted 
tasks may provide valuable insight into neuromuscular 
control strategies for achieving common daily tasks.

In this study, we analyzed electromyography (EMG) 
collected from the hip, knee, and ankle muscles in young 
adults performing the Timed-Up-and-Go (TUG) test to 
investigate motor module generalization across different 
functional tasks. The TUG test is a commonly used clinical 
mobility test in which subjects stand up from a chair, walk 
3 meters, turn around a cone, and walk back to the chair 
to sit down (Podsiadlo & Richardson, 1991). We chose to 
examine muscle activity during the TUG test because it 
contains a variety of functional tasks that are important 
for daily life. In particular, the TUG test includes transi-
tional subtasks like chair transfers and turns that are crit-
ical for independence but also a common source of falls 
(Crenshaw & Al, 2017; Hyndman et al., 2002; Robinovitch 
et al., 2013). Our overall hypothesis is that healthy young 
adults recruit from a “library” of motor modules to meet 
the multi-task demands of daily life and that motor mod-
ule composition is robust to cognitive distractions. Based 
on this hypothesis, we predicted that (1) young adults 
would recruit a small number of common motor modules 
across the subtasks of the TUG test (sit-to-stand, walking, 
turning, and stand-to-sit) and that when performing a 
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secondary cognitive task (2) the number and composition 
of these motor modules would not change, (3) but their 
recruitment timing and level of activation would become 
more variable.

2   |   METHODS

2.1  |  Participants

Thirteen healthy young adults (5 M, 21.4 ± 1.6 years) par-
ticipated in this study. Inclusion criteria were age between 
18 and 35 years old. Exclusion criteria were any diagnosed 
neurological or psychological conditions, musculoskel-
etal conditions, sensory deficits, stroke, traumatic brain 
injury, or a concussion or other injury within a year of 
participation. All participants provided written informed 
consent before participating according to an experimen-
tal protocol approved by the institutional review board of 
West Virginia University.

2.2  |  Data collection and processing

Each subject performed the TUG test (illustrated in Figure 
1a) first while walking normally (TUG) and then while 
counting backwards by three's (TUGC). For TUGC, sub-
jects were instructed to pay equal attention to both the 

counting and walking tasks. Subjects self-selected which 
direction they turned around the cone until 10 trials of 
one turn direction were completed. Then we instructed 
them to turn the opposite direction for an additional 10 
trials. Turning direction when sitting back down in the 
chair was not enforced. Some trials were removed be-
fore analyzing due to experimental or equipment error 
(n = 25, 5% of total trials) or subject error (e.g., kicking 
the cone, n  =21, 4% of total trials). In both conditions, 
each subject completed the TUG test with at least six good 
trials for each turn direction around the cone (avg: TUG 
9.46 ± 1.42, TUGC 10.12 ± 1.30).

Three-dimensional marker position was collected  at 
100  Hz with a 10 camera Vicon motion capture system 
and a modified plug-in gait marker set with 31 markers 
placed on the head, trunk, pelvis, thigh, shank, and foot 
segments. Marker data from the heels, toes, and clavicle 
were used to segment the TUG test into four subtasks: Sit-
to-Stand, Walk, Turn, and Stand-to-Sit. The two walking 
portions were combined into one subtask and turn direc-
tions for both the Turning and Stand-to-Sit subtasks were 
considered separately (e.g., right turn vs. left turn) for a 
maximum total of six subtasks. Turning direction during 
Stand-to-Sit was not enforced; some subjects consistently 
chose one direction for every trial and therefore only had 
five different subtasks. Details of TUG segmentation are 
listed in Table 1 and an example can be found in the sup-
plementary material (Figure S1).

F I G U R E  1   The Timed-Up-and-Go 
(TUG) test. (a) In the TUG test, subjects 
get up from a chair, walk around a cone 
3 m away, walk back to the chair, and sit 
back down. (b) Example muscle activity 
from selected muscles (tibialis anterior 
[TA], lateral gastrocnemius [LGAS], 
vastus lateralis [VLAT], and biceps 
femoris long head [BFLH]) during the 
TUG test with labeled subtasks. Gray 
boxes indicate the walking portions 
of TUG, while white sections indicate 
Sit-to-Stand, Turn, and Stand-to-Sit. (c) 
The subtask proportions used during 
activation analyses (see Section 2.3.2)
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Surface EMG data were collected at 1000  Hz from 
12 muscles per leg: gluteus maximus (GMAX), gluteus me-
dius (GMED), tensor fasciae latae (TFL), adductor magnus 
(ADD), biceps femoris long head (BFLH), rectus femoris 
(RFEM), vastus lateralis (VLAT), medial and lateral gas-
trocnemius (MGAS and LGAS), soleus (SOL), peroneus 
longus (PERO), and tibialis anterior (TA). EMG data were 
high-pass filtered at 35 Hz (third-order Butterworth filter), 
demeaned, rectified, and then low-pass filtered at 10  Hz 
(third-order Butterworth filter) using custom MATLAB 
scripts (example EMG in TUG, Figure 1b). For each subject, 
leg, and condition, separate EMG matrices were generated 
by concatenating data from all trials for that condition end-
to-end to form an m × t matrix, where m is the number of 
muscles and t is the number of timepoints (equal to the 
number of trials × the number of timepoints per trial). For 
each condition (TUG and TUGC), there were 6 or 7 differ-
ent EMG matrices per subject and leg - each subtask plus 
the full TUG test. Those subjects who consistently turned 
in the same direction when sitting back down had 6 matri-
ces, whereas those who mixed their turning direction when 
sitting down had 7. Each EMG matrix was then normal-
ized to the maximum observed value for each muscle in the 
EMG matrix for the full TUG test.

2.3  |  Motor modules 
extraction and analysis

Motor modules were separately extracted from the EMG 
data matrix for each subject, leg (left vs. right), condi-
tion (TUG vs. TUGC), and subtask (i.e., the full TUG 
test and each TUG subtask) using nonnegative ma-
trix factorization (MATLAB’s “nnmf” function, with 
the following options: “mult” algorithm, 50 replicates, 
MaxIter = 1000, TolFun = 1e-6, and TolX = 1e-4). Motor 
modules were extracted such that EMG = W × C + ε, 
where W is an m  ×  n matrix of the n motor module 
weights for m muscles, C is an n  ×  t matrix contain-
ing the activation coefficients for each module, and ε is 

the EMG reconstruction error. Motor module weights 
(W) are time-invariant, while the activation coefficients 
(C) may vary across trials as needed to reconstruct the 
observed EMG. To ensure equal weight of each muscle 
during the extraction process and avoid biasing toward 
muscles with high variance and amplitude, the data for 
each muscle were scaled to unit variance before motor 
module extraction and then rescaled to original units 
afterwards (Torres-Oviedo & Ting, 2007). After extrac-
tion, module weights (W’s) and activation coefficients 
(C’s) were normalized such that the peak weight in each 
module was equal to 1.

We extracted 1–12  motor modules from each EMG 
matrix and selected the minimum number needed to suf-
ficiently reconstruct the original data. Module numbers 
were chosen such that the 95% confidence interval of the 
overall variance accounted for (VAF) was greater than 90% 
(Cheung et al., 2009), where VAF is the squared uncen-
tered Pearson's correlation coefficient between the recon-
structed EMG (W × C) and the original EMG (Zar, 1999). 
95% confidence intervals on VAF were generated using a 
bootstrapping procedure (250 samples with replacement) 
(Cheung, d’Avella, et al., 2009; Efron & Tibshirani, 1994). 
We then examined motor module generalization and the 
impact of the cognitive task as follows:

2.3.1  |  Generalization of motor modules 
across tasks

To investigate motor module generalization during the 
TUG test, we used a clustering analysis to group similar 
modules recruited during the TUG subtasks. For each 
subject we determined (1) the level of motor module gen-
eralization across TUG subtasks, (2) the level of similarity 
between clustered motor modules, and (3) the level of sim-
ilarity between modules recruited during TUG subtasks 
to those recruited during the full TUG test. Examples of 
these metrics are shown in Figure 2 and their calculations 
are described below.

T A B L E  1   Criteria used to separate subtasks of the TUG test

Event
Marker 
Used Definition Explanation

1-TUG start Clavicle Local minimum in X direction start of forward movement

2-walk 1 start Toe local minimum in Z direction first toe-off

3-turn start heel local minimum in Z direction last heel strike before turning (feet 
facing straight ahead)

4-turn stop toe local minimum in Z direction last toe-off before walking straight (feet 
facing straight ahead)

5-walk 2 stop heel local minimum in Z direction last heel strike before turning to sit

6-TUG stop clavicle local minimum in X direction end of backward movement
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Motor module generalization
Motor modules recruited during TUG subtasks in the 
normal condition were separately pooled for each sub-
ject and leg and then sorted with a clustering algorithm 
(Cheung et al., 2005). The “cluster” function from the 
MATLAB Statistics and Machine Learning Toolbox was 
used to cluster the modules, with the distance metric 
Minkowski order p  =  3 and Ward's linkage option. 
The number of clusters within each group was deter-
mined as the minimum number such that each cluster 
contained no more than one motor module from each 
subtask (Allen et al., 2019; Cheung et al., 2005; Cheung, 
Piron, et al., 2009). Generalization of motor modules 

across subtasks was calculated as a percentage and de-
fined as,

where c is the number of clusters, ni is the number of 
modules recruited during the ith subtask, T is the total 
number of subtasks (5 or 6 per subject, depending 
on whether a subject turned in both directions in the 
Stand-to-Sit turns or not), and nmin is the smallest num-
ber of modules recruited in that subject and leg during 

module generalization = 100 ∗

�

1 −
c − nmin
∑T

i=1 ni

�

F I G U R E  2   Example of clustered motor modules for a representative subject's left leg. The first six columns contain the motor modules 
recruited during each TUG subtask. Modules in the same row were clustered together. The second column from the right shows the average 
modules for each cluster and the last column contains the motor modules from the full TUG test. In this example, the subject had five 
clusters and 91.6% generalization. There are four common motor modules between the full TUG test and the cluster averages, giving 80% in 
common
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any subtask. Figure 2 illustrates a representative subject 
whose modules were sorted into five clusters with 91.7% 
generalization.

Within-cluster motor module similarity
To assess module similarity within each cluster, we cal-
culated the cluster consistency as the pairwise linear cor-
relation coefficient between all modules in each cluster 
and averaged for each subject and leg. Module pairs with 
r ≥ 0.7079, the critical r value for α = 0.01 (for n = 12 mus-
cles, n–2 = 10 degrees of freedom, two-tailed test), were 
considered similar.

Similarity between subtask and full TUG motor modules
Finally, to determine the similarity of modules identified 
during the TUG subtasks to modules from the full TUG 
test, motor modules from the full TUG test were compared 
to averaged modules from each cluster using Pearson's 
correlation coefficients, again with a similarity threshold 
of r ≥ 0.7079 (example comparison illustrated in Figure 2).

2.3.2  |  Effects of a cognitive task on motor 
module recruitment

To characterize the effects of a secondary cognitive task 
on motor module recruitment, we compared both the spa-
tial and temporal aspects of motor modules recruited dur-
ing TUG versus TUGC.

We analyzed spatial effects by comparing (1) motor 
module number and (2) motor module composition be-
tween TUG and TUGC. The number of motor modules 
recruited during TUG and TUGC were compared using 
paired t-tests for the full TUG test and each of its subtasks 
(7 total). Motor module composition (W’s) from TUG and 
TUGC for the full TUG and each subtask were compared 
using Pearson's correlation coefficients, where module 
pairs with correlation coefficients r ≥ 0.7079 were consid-
ered the same. We also identified how many modules were 
common between TUG and TUGC by calculating the per-
centage of common modules, defined as,

for each subject, leg, and subtask.
We analyzed temporal effects by comparing motor mod-

ule recruitment variability between TUG and TUGC. Motor 
module activation coefficients (C’s) for each module were 
first separated by trial. Each trial was then time-normalized 
to be the same number of data points and such that the 
lengths of the chair transfers and walking-turning portions 
were consistent. Specifically, for each trial we calculated the 

proportion of each segment as subtask time / TUG time. We 
then averaged these values across all trials and subjects and 
rounded to the nearest whole number for each TUG seg-
ment (Figure 1c). Each trial was then normalized to be 1024 
points long, with 154 data points in sit-to-stand, 532 points 
in walking-turning, and 338 points in stand-to-sit. See Figure 
S2 and “Normalization of Motor Module Activations” in the 
Supplementary Material for an example and further details. 
We then separated the trials based on “kinematic strategy,” 
defined as the sequence of first step leg, turn direction, and 
Stand-to-Sit turn direction. We separated trials in this way 
because the shapes of motor module activation curves vary 
based on the TUG kinematic strategy used (e.g., which leg 
was used to take the first step) without representing true 
changes in motor module recruitment. To account for this, 
we only compared the time-normalized module activations 
from sequences that a subject used in both TUG and TUGC. 
Specifically, the average root-mean-square error (RMSE) of 
module activations from common motor modules across all 
subjects, legs, and tasks were compared using a paired t-test. 
See Figure S3, Table S2, and “Kinematic Strategy Separation” 
in the Supplementary Material for an example and further 
details.

2.3.3  |  Effects of dual task on TUG and 
counting performance

Finally, to investigate dual-task effects on cognitive perfor-
mance (i.e., counting backwards by threes from a random 
number), we compared the counting score and count-
ing rate during TUGC to baseline counting performance. 
Baseline counting performance was collected while sub-
jects were seated in the chair for 15 s (minimum 2 base-
line trials). Subjects were instructed to repeat the given 
number and then for each TUGC trial, the counting score 
was calculated as # correct/total # of counts and the count-
ing rate as total # of counts/time. Counting scores during 
both TUGC and the baseline were highly skewed toward 
1 (Shapiro–Wilk (sw) test statistics: baseline sw  =  0.50, 
p < 0.001, TUGC sw = 0.82, p = 0.01), so they were com-
pared using a Wilcoxon signed rank test (α  =  0.025). 
Counting rates during TUGC and the baseline fit within 
a normal distribution and were compared using a paired 
t-test (baseline sw  =  0.97, p  =  0.88, TUG sw  =  0.92, 
p = 0.22). TUG performance times with and without the 
cognitive task were compared using a paired t-test.

3   |   RESULTS

Subjects recruited a small number of unique modules that 
were similar across TUG subtasks. Motor modules from 

% common = 100 ∗
#common

sum total in TUG and TUGC − #common
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TUG subtasks were grouped into a small number of clus-
ters (avg 5.6 ± 0.99, Figure 3a), leading to a high percent-
age generalization (avg 89.23 ± 3.41%, Figure 3b). Most 
clusters were consistent across subtasks (avg 0.80 ± 0.06, 
Figure 3d), with only two of the 11  subjects having an 
average cluster consistency below the 0.7079  similar-
ity threshold in one of their legs (avgs for each subject: 
0.60, 0.70). The averaged motor modules across all sub-
tasks within each cluster were very similar to modules 
recruited during the full TUG test (avg r = 0.789 ± 0.115, 
Figure 3c).

Motor module composition was unchanged when 
performing the TUG test with the secondary cognitive 
task of counting backwards by threes. Subjects recruited 
an average of 4.5  motor modules during TUG (Figure 
4), which was not significantly different during TUGC 
(p  =  0.75, Figure 5a and Supplementary Data Table 
S3). Similarly, there was no significant difference in the 
number of motor modules recruited during TUG and 
TUGC for any TUG subtask (see Supplementary Data 
Table S3 for all t-test results). Subjects recruited motor 
modules with similar compositions during TUG versus 
TUGC. Motor modules were highly similar during full 
TUG (93.7 ± 0.1%, Figure 5a). Modules were also simi-
lar in each subtask (avg across all subtasks: 78.7 ± 0.2), 
though there was more inter-subject variability 

(range  =  17%–100%, Figure 5b). Further, most module 
pairs were more strongly correlated than the similarity 
threshold, illustrated in a histogram of pooled correla-
tion coefficients (Figure 5c).

In contrast, motor module activation became more con-
sistent across repetitions of the TUG test when counting 
backwards by threes. Motor module activation variability 
was significantly lower in TUGC than in TUG (avg rmse 
for TUG: 0.066 ± 0.010, TUGC: 0.061 ± 0.011, p = 0.008, 
Figure 6b).

Importantly, the shape of the motor module activation 
curves varied depending on which leg took the first step, 
the turn direction, around the cone, and the turn direction 
when sitting back down (e.g., Figure 6a). Although most 
subjects used only two sequences (one for each turn direc-
tion around the cone), a smaller subset used 3–4 (Figure 
6c) because they switched their turn direction when sit-
ting down or varied the first step leg. Only the module 
activations from trials with similar sequences were com-
pared between TUG and TUGC (avg 8.9 ± 2.1 trials per 
sequence; Figure 6d).

Dual task affected TUG time but not counting perfor-
mance. The addition of a secondary cognitive task led to a 
significant but small difference in TUG performance time 
(TUG: 6.76 ± 0.93 s, TUGC: 7.11 ± 1.10 s, p = 0.02, Figure 
7a). Counting score (base: 0.93 ± 0.13, TUGC: 0.93 ± 0.20, 

F I G U R E  3   Motor module 
clustering results. For all panels, 
each dot represents one subject and 
leg (n = 13). (a) Motor modules were 
grouped into a small number of clusters 
across all subjects, (b) leading to a high 
percentage generalization. (c) Motor 
modules recruited during the full TUG 
test were well matched with the cluster 
averages and (d) Motor modules within 
each cluster were similar to each other, 
producing a high cluster consistency
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p = 0.23, Figure 7b) and counting rate (base: 0.6590 ± 0.24, 
TUGC: 0.0.63 ± 0.16 counts/s, p = 0.31, Figure 7c) were 
not different between the baseline trial and TUGC.

4   |   DISCUSSION

The central nervous system may rely on generalizable con-
trol strategies to meet the multi-task demands of daily life. 
In support of this hypothesis, we show here that healthy 
young adults recruit a small set of generalizable motor 
modules across the subtasks of the TUG test and that the 
composition, but not the activation, of those motor mod-
ules is robust to cognitive distraction. This work is the first 
to demonstrate motor module generalization across mul-
tiple tasks that are both functionally different and crucial 
for healthy mobility.

4.1  |  Generalization of motor modules 
across tasks

Consistent with our hypothesis, our data suggest that 
young adults recruit a small set of generalizable motor 
modules across several functional tasks important for 
moving about in the world during daily life -  walking, 
turning, and getting in and out of a chair. Prior work has 
demonstrated that the same motor modules are recruited 
to perform a single task under varying demands (e.g., ped-
aling at different speeds [Hug et al., 2011] or maintaining 
balance under different postural configurations [Torres-
Oviedo & Ting, 2010]). Here, we expand upon this prior 
work to demonstrate that many of the same motor mod-
ules are recruited to perform different tasks.

Generalizing the recruitment of motor modules 
may enable the successful execution of similar basic 

F I G U R E  4   Number of motor modules recruited during the TUG test and its subtasks. The number of modules did not change between 
TUG and TUGC for the full TUG test, or any of the subtasks. (n = 13, paired t-test p = 0.75).



      |  9 of 14CAREY et al.

mechanical demands required of different tasks. Except 
for turning, the tasks we examined are dominated by sag-
ittal plane motion that likely require the achievement of 
similar basic mechanical demands such as plantarflexion, 
leg support, and center-of-mass stabilization. Even though 
our 180° turning task includes substantial non-sagittal 
plane motion, its successful performance also requires the 
achievement of many of these same demands. However, 
how these demands must be met and coordinated together 
to achieve successful task performance varies between 
tasks. For example, walking and sit-to-stand both involve 
propelling the center of mass forward and extending the 
limbs while keeping the foot fixed; however, sit-to-stand 
uses symmetric movements and includes a larger vertical 
COM movement, while walking alternates leg movements 
and requires stability during single leg stance (Cahill et al., 
1999; Winter, 1995). To meet these varying coordination 
requirements, we found that young adults modulated the 
recruitment (i.e., activation timing) and not the structure 
of the motor modules. We also found that most subjects re-
cruited a plantarflexor module, knee extensor module, and 
a dorsiflexor module across all tasks. These motor modules 
are similar to those previously identified as important for 
meeting the mechanical demands of walking (Allen & 
Neptune, 2012; Clark et al., 2010; Neptune et al., 2009). 
Follow-up studies are needed to determine whether these 
generalized motor modules are indeed recruited to produce 
similar basic mechanical demands across different tasks.

Although many motor modules were generalized 
across all tasks, task-specific modules did emerge during 
turning. The emergence of task-specific modules is con-
sistent with prior work. For example, Ivanenko and col-
leagues observed the emergence of task-specific modules 
when walking while performing an additional task (e.g., 
picking up an object or stepping over an obstacle; Ivanenko 
et al., 2005). However, the emergence of turning-specific 
motor modules differs from a study by Chia Bejarano and 
colleagues in which similar motor modules were recruit-
ing during walking and turning (Chia Bejarano et al., 
2017). The contrasting results likely stem from differ-
ences in the differing radii of the turns and the mechani-
cal demands they require. In (Chia Bejarano et al., 2017), 
subjects walked around a circle with a 1.2  m radius, 
whereas in the current study subjects turn tightly around 
a cone or pivot on one leg to change direction 180° (see 
the left turns in Figure 2). Such a tight turn may involve 
much more weight shifting and stepping changes than 
walking around a wider curve, and therefore are more 
likely to require additional motor module recruitment. 
For example, the inside turn leg would have increased 
demand for both stability and directing the turn. In our 
study, the turning-specific modules were often composed 
primarily of hip muscles (GMAX, GMED, ADD); GMED 
specifically is known to be important for pelvic stability 
during single leg stance (Gottschalk et al., 1989; Semciw 
et al., 2013) and contributes to mediolateral control of the 

F I G U R E  5   Motor module similarity 
during TUG and TUGC. (n = 13) Motor 
module composition was very similar 
during TUG and TUGC, leading to a 
high percentage common during (a) the 
full TUG test and (b) each of its subtasks 
and (c) very high correlation coefficients 
between all pairs of modules (pooled 
across all subjects and subtasks, the gray 
line represents the cutoff for significant 
similarity, r ≥ 0.7079)
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center-of-mass (Pandy et al., 2010). The recruitment of 
such a module is consistent with increased demand for 
stability and frontal plane movements during this turn 
that may not be achievable using the generalized mod-
ules on their own. As turns are a common source of falls 
for people with mobility impairments (e.g., Crenshaw 
& Al, 2017; Robinovitch et al., 2013; Stack & Ashburn, 
1999), some of this difficulty could stem from an inability 
to appropriately recruit turning-specific motor modules. 
Overall, our results suggest that the nervous system re-
uses and modifies the same control strategies to execute 
and shift between similar tasks. When the mechanical 

demands for a task cannot be met by that module set, ad-
ditional modules must be recruited.

Although the method used to cluster modules across 
tasks has been used both by us and others in previous stud-
ies (e.g., Allen & Franz, 2018; Allen et al., 2019; Cheung 
et al., 2005; Sawers et al., 2017), it is not without its limita-
tions. In particular, motor modules were clustered primar-
ily based on their dominant muscles and contributions 
from other muscles could vary between modules within a 
cluster. It is for this reason that we included a cluster sim-
ilarity metric, in which we found that modules placed in 
each cluster were highly consistent in almost all subjects 

F I G U R E  6   Temporal dual task effects. (a) Example module activations from the left leg of one subject in two kinematic strategies. 
(b) Average root mean squared error of motor module activations during TUG and TUGC (n = 26 legs, paired t-test p = 0.008). Module 
variability was significantly lower in TUGC than normal TUG. (c) Number of kinematic strategies (sequences) used by each subject. Across 
all trials, most subjects used 2–3 different kinematic strategies, but only had 1–2 strategies used in both TUG and TUGC. (d) Number of 
trials used in RMSE analysis, ranged from 4 to 13 trials per kinematic sequence

(a)

(b) (c) (d)
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(9 of 11  subjects). Based on this intracluster similarity, 
we do not believe this clustering algorithm limitation af-
fects our main conclusion that participants draw from a 
small library of motor modules to execute different tasks. 
However, future studies should explore the impacts of dif-
ferent clustering algorithms on motor module groupings.

4.2  |  Dual task effects

Consistent with our hypothesis, we found that motor 
module number and composition are robust to cogni-
tive distraction. Moreover, we found that both TUG and 
counting performance were not affected by the cognitive-
motor dual task condition. Though we identified a statis-
tically significant increase in TUG performance timing 
in the dual-task condition, the increased time of 0.35s is 
substantially lower than the minimal detectable change 
that is on the order of seconds not sub-seconds (e.g., 1s in 
individuals with knee osteoarthritis [Alghadir et al., 2015] 
and 3s in stroke survivors [Flansbjer et al., 2005]). The 
lack of meaningful change in TUG time or counting per-
formance suggests that our young adult population was 
able to successfully focus on the counting task enough to 
keep their performance consistent without compromising 
TUG performance.

Although motor module number and composition 
did not change in the presence of a cognitive distraction, 
motor module activation became more consistent. This 
result is in contrast with our hypothesis that activation 
would become more variable when cognitively distracted. 
Our finding that motor module activations became more 
consistent when performing the TUG test with a cogni-
tive distraction could mean that subjects allowed their 
movements to become more automatic while they fo-
cused on the counting task, despite instructions to pay 
equal attention to both counting and TUG performance. 
Movements like walking require both automatic and 

executive control, but healthy young adults rely on more 
automatic control than other populations. In populations 
that use less automatic control for walking, such as older 
adults, walking and cognitive tasks compete for executive 
control resources, impeding performance in both tasks 
(Clark, 2015). However, healthy young adults likely have 
enough automaticity and processing capacity to devote at-
tention to the cognitive task while relying on automatic 
control to perform the TUG test. Our results of increased 
recruitment consistency are also in agreement with recent 
work demonstrating increased dynamic stability of motor 
modules under dual task conditions without correspond-
ing effects on center of mass stability (in anterior/poste-
rior or mediolateral directions [Walsh, 2021]), suggesting 
an adjustment by the nervous system to prioritize stability 
during cognitive distractions.

Alternatively, the increased activation consistency 
could be related to the instructions, order of tasks, and/
or difficulty of the cognitive task. TUGC trials were al-
ways performed second, and subjects may have been more 
confident paying less attention to their movements than if 
TUGC had occurred first. Additionally, subjects may not 
pay much attention to their initial TUG performance but 
become more focused during TUGC because of the in-
structions given. For the normal TUG test, subjects were 
given no instructions about their focus, and may have al-
lowed their minds to wander during this repetitive and 
unchallenging task. During TUGC, they were told to pay 
equal attention to both the counting and TUG and may 
therefore have given the TUG performance more atten-
tion than they had previously, leading to more consistent 
motor module activations. Finally, it is also possible that 
our findings are influenced by the difficulty of the cog-
nitive task. In particular, the serial subtraction by threes 
may have been too easy for our young adult population. 
Decker and colleagues demonstrated a U-shaped relation-
ship between cognitive demand and gait control (mea-
sured through step length and width variabilities [Decker 

F I G U R E  7   Dual Task Costs of the TUG test. (a) There was a small but significant increase in TUG performance time with the added 
counting task (n = 13, paired t-test p = 0.02). There was no change in either (b) counting accuracy (n = 13, Wilcoxon signed rank test 
p = 0.23) or (c) the counting speed (n = 13, paired t-test p = 0.22) from baseline to TUGC

(a) (b) (c)
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et al., 2016]); more changes in motor module activations 
could emerge with more difficult dual task conditions.

Though the underlying reasons for the change in 
motor module activations in the presence of cognitive dis-
traction remain unclear, our results do suggest that cog-
nitive distraction can impact motor module recruitment. 
Careful follow-up studies could clarify the responses by 
incorporating a variety of cognitive distractions and con-
trolling for practice effects. Understanding how cognitive 
distractions impact motor module recruitment and acti-
vation would provide further insight into the underlying 
neuromuscular control mechanisms in both healthy and 
balance impaired populations who may be more affected 
by cognitive dual tasking.

5   |   CONCLUSIONS

Our results support the hypothesis that healthy young 
adults recruit from a “library” of motor modules to meet 
the multi-tasks demands of daily life. Specifically, we 
found that a small number of common motor modules 
was recruited during walking, turning, and chair trans-
fers and that their structure was robust to cognitive dis-
traction. Achieving different mechanical and cognitive 
demands were accomplished through changes in motor 
module activation. This work is the first step toward a full 
characterization of motor module recruitment patterns in 
healthy adults across a wide range of daily life tasks. Our 
results provide a basis for interpreting the effects of motor 
module changes on mobility and fall risk during daily life 
that occur in populations with neural or musculoskeletal 
injuries.
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